a2 United States Patent

Ambrosio et al.

US009471404B1

(10) Patent No.:

45) Date of Patent:

US 9,471,404 B1
Oct. 18, 2016

(54) ENRICHING API REGISTRY USING BIG

DATA ANALYTICS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)
(72) Inventors: Ronald Ambrosio, Poughquag, NY
(US); Amol A. Dhondse, Pune (IN);
Chitra Dorai, Chappaqua, NY (US);
Anand Pikle, Pune (IN); Krishnan K.
Ramachandran, Campbell, CA (US);
Gandhi Sivakumar, Victoria (AU)
(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 14/876,934
(22) Filed: Oct. 7, 2015
(51) Imt.CL
GO6F 3/00 (2006.01)
GO6F 9/54 (2006.01)
GO6F 17/30 (2006.01)
GO6F 9/44 (2006.01)
(52) US. CL
CPCccoeonueue GO6F 9/543 (2013.01); GOGF 8/30
(2013.01); GO6F 9/54 (2013.01); GO6F
17/30525 (2013.01)
(58) Field of Classification Search
CPC .. GOG6F 9/54; GOGF 8/30
USPC 719/310; 717/106
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,895472 A *
6,253,257 Bl

4/1999 Brodsky et al. GO6F 8/71
6/2001 Dundon

6,546,548 B1* 4/2003 Berry et al. GOG6F 11/3466
717/128
7,188,114 B2 3/2007 Liu et al.
7,444,522 Bl 10/2008 Chang et al.
7,818,331 B2 10/2010 Zubev
7,844,612 B2 11/2010 Colgrave et al.
7,904,480 B2 3/2011 Palanisamy
8,099,709 B2 1/2012 Baikov et al.
8,239,419 B2 8/2012 Lo
8,595,246 B2 11/2013 Fay et al.
8,650,479 B2 2/2014 Jardine-Skinner et al.
2009/0024561 Al 1/2009 Palanisamy
2010/0161629 Al 6/2010 Palanisamy et al.
2012/0144295 Al 6/2012 Clark et al.
2013/0318536 Al 11/2013 Fletcher et al.
(Continued)

OTHER PUBLICATIONS

Mark J Kilgard, The OpenGL Utility Toolkit(GLUT) Programming
Interface API Version 3, 1996.*

(Continued)

Primary Examiner — Lechi Truong
(74) Attorney, Agent, or Firm — Garg Law Firm, PLLC;
Rakesh Garg; Matthew Chung

(57) ABSTRACT

For data integration using APIs, a request for data is ana-
lyzed to determine a set of functional characteristics and a
set of non-functional characteristics expected in the data. A
first API entry is selected in a registry of API entries, the first
API entry corresponding to a first API of the first data
source. The first API entry includes a first metadata corre-
sponding to a first functional characteristic in the set of
functional characteristics. The first API is invoked to obtain
a first portion of the data, the first portion having the first
functional characteristic. Using a second API entry in the
registry, a second API is invoked to obtain a second portion
of the data. The first portion and the second portion are
returned in a response to the request.

19 Claims, 6 Drawing Sheets

APPLICATION 02

API ANALYSIS 320 |

AP| 334

RESULT SET ANALYSIS 326

F METADATA 334A
NF METADATA 3348

FUNCTIONAL METADATA EXTRACTION 328 |

GAP/REDIRECT 334D
SOURCE 1

SOURCEn

NON - FUNCTIONAL METADATA EXTRACTION L’ml

REGISTRY 318

REGISTRY MANAGEMENT 332 |

(SOURCE 1) SQURCE 304
)
e Y [i
API H
:m‘ ' /
- RESPONSE.
X i - SXE
(SOURCEn) SOURCE 306
— — i
—1
DQQTQA A;Q'< - |—RresPoNsEp) |
—

!

BIG DATA
ANALYTICS
ENGINE
8

US 9,471,404 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2014/0040182 Al
2014/0379762 Al

2/2014 Gilder et al.
12/2014 Suresh et al.

OTHER PUBLICATIONS

Anonymously; Metadata driven system for REST-based application
development, Aug. 8, 2011.

Anonymously; A System and Method for Providing Meta-data
Model based Distributed Data Validation, Feb. 3, 2012.

Aravindh et al; Decentralized Service Discovery Approach Using
Dynamic Virtual Server, International Journal of Advanced

Research in Computer and Communication Engineering vol. 3,
Issue 1, Jan. 2014.

Ahmed et al; Dynamic Web Service Discovery Model Based on
Artificial Neural Network with QoS Support, International Journal
of Scientific & Engineering Research vol. 3, Issue 3, Mar. 2012,
ISSN 2229-5518.

Kirubakaran et al; Service Discovery Framework with Functional
and Non-Functional Information (SDF), International Journal of
Advanced Research in Computer Science and Software Engineer-
ing, vol. 2, Issue 12, Dec. 2012 ISSN: 2277 128X.

Armin Haller et al., Business Process Management Workshops,
BPM 2005 International Workshops, BPI, BPD, ENEI, BPRM,
WSCOBPM, BPS, Nancy, France, Sep. 5, 2005.

* cited by examiner

US 9,471,404 B1

Sheet 1 of 6

Oct. 18, 2016

U.S. Patent

b1 IN3ITO

CIT
IdV¥ 304N0S
vivda

OLT LNTITO

901 H3AH3S
a [1] — —
IANIONT M (—
SOILATVNY, . .

2o
HHOMLAN

T
Idv 304N0S :_
vlva

L1 IN3ITO

S
NOILVOINddY
HOLS3INOIY

Vel

NOILYOI1ddV
W_O._.wm_DOm_IN\

A |
1

[

€1l 301A3d

1 3YNO1

B0l
AHLSIO3Y

801
39VHOLS

FRSENNSE S

SOL
NOILVDINddv | [8]

Q)
O
-~

US 9,471,404 B1

Sheet 2 of 6

Oct. 18, 2016

U.S. Patent

t4%4
y3Ldvay
- . - MHOMLAN
[z 74 Y3Ldvay . S1MO0d
NOY W3IQOW 3SNOW ANV oo YIHLO ez 744
QMYOgAIM aNv gsn WNOY-a0 sIa
‘ 557 (4 ohzsng
gec sn8 HOI/gS
9z oz @
ols ¥3Ldvav olany _
_ — o4
502 AH-/_\ 70e
K N vossaooud
AHOWIIN NIV HOW/EN AR
90¢
\‘ 1IN ONISSIO0Nd
00¢
HYNODIA

US 9,471,404 B1

Sheet 3 of 6

Oct. 18, 2016

U.S. Patent

7~ AULSIOT N

91¢
ANIONT
SOILATYNY
vivaolg

!

€€ INJWIOVNVIN AY1SIO3Y

u3o4dNos

€€ NOILOVYYH1X3 VLVAVLIA T¥NOILONNSL - NON

L 304N0S

avee 10341a34/dvo

¢E NOILOVH1X3 V1VAV1I3IW T¥YNOILONNA

gree VIVAv1i3an 4N

VPee VIVAv1lan 4

CE SISATYNY 135 11Ns3y

PEE Idv
—

TN
—

0Z€ SISATYNY IdV

c0E NOILYOIddVY

EHYNODIA

1
— . 01E 00€
Epew | |
90¢ 304NOS (U 3DHNOS)
_)
vee]
€ cnodsa H
’ . 80¢€
A —
G -
P
0T 308N0s (1 I0UNOS)

US 9,471,404 B1

Sheet 4 of 6

Oct. 18, 2016

U.S. Patent

44

A4

L zv
02F X 304N0S

™~ 92 NOILO3NIa3d

| LAY > g | —

8l¥ A 30HNOS ¢cy ATaNISSY ISNOJSTY

™~
-
<t

Z XV _A P

_ L Xv _A P FIT ONITIVO IdY

9l¥ X 308N0S ﬂ
HLOEG/NOILOTHIaT

4 ~ /V1va ISNOJSTd

| 1 [] [] 217 (S304N0S FHOW HO INO WOHS SIdY
evllearlliay > IHOW YO INO HOLYIW ANV XIW) NOILOF13S IdY

Z304N0sS

|

| tav |

A 4

80V

A S0HN0S OIF (NOILYOI4ILNIAI SINIWTHINOTY oSO {
AN ANV 4) SISATYNY 1S3nD3Y [SolLSmaLovEHO Y
0%
a3sSIHAXT HLIM
Z XY v1vad ¥04 1s3nDaN 018303

L XV or NOILVOI1ddY
X324N0S

:

TOF AYLSIOTY

> —

US 9,471,404 B1

Sheet 5 of 6

Oct. 18, 2016

U.S. Patent

an3

45
AdLSIO3d V NI V1VAvL1InW
IdV 31¥AdN/340.1s

A

0lS
(s319vYIS3IANN YO SdVD
d04 S1034I03Y 'S103dSY
37avVdISIANN/31avdIS3d
‘'8dV9D 391¥083A 'SLNINOJWOD
4N ANV 4 3aNT1OND IdY IHL
H04d VIVAVLIW LONYLSNOD

A

805
138 11NS3Y 3HL 40 103dSY
IVNOILONNA-NON V 31VNTVAT

7

908
138 17NS3d 3HL 40
SLININOJINOD T¥YNOILONNA
JHL ININY3I L3

7}

705
(IVOIYOLSIH O INIHHND) IdY
3IHL ONISN 138 LINSIY V NIVLE0

A

205
138 11NS3d ANV SH3LINVEV
IdV ANINY3130 OL IdV NY
JZATVYNY ‘FOMNOS V.LVA Y HOd

A

14v1s

S HINOIA

Q)
[tp)

US 9,471,404 B1

Sheet 6 of 6

Oct. 18, 2016

U.S. Patent

FHOW &0 INO INIFO

[or43]

A

S13s sS1INs3d

¢S13S 171Ns3 IHL
Ad d3I4SILVS IN NV

2c9

477

819
1S3N0IY IHL O1 ONIJHOD2Y
SIdV 3103738 IHOANI

Z19

A

919
30UNOS d31L0313S d3d sidv
JHOW JO INO 10313S

[—ON

S3A ON
_ 72
975 JILSI4ILOVEVHD IN 40 4

11NS3d) LSINDIY IHL OL

(H108 ¥O S103MIa3Y ‘s13S :
ISNOdSTH IHL 31aWISSY :

a3I4SILYSNN H04 304N0S
v (AYLSI93Y INISTNd
THL NI NOILYIWHOANI dVO d0
=== /ANY SR LS193d ¥3HLO 40

A

NOILYWHOANI ONISN) AdILNIAl

A

¥19
AdSILYS LVHL S30¥N0S
AdILTNW LD3FT1IS

<—ON

929

S304dN0OS ¥3HLO FHL HO4
NOILYINYOSNI L234103y 139

0€9
ISNOJS3H AN3S

(@)
)
©l

9 H4NOI1A

|dV LO373S

X

S3A

019
¢1dv INO Ad
a314SI1LVYS

809
3J0H¥NOS 103138

4

S3A

909
(AN anv 4
¢30YNOS INO Ad
a314SILYS

09
V1va d3Ls3andad 3HL
40 SOILSIYILOVIVHO
T¥YNOILONN4-NON ANV
TYNOILONNA IHL AHILN3AI
OL1 1S3N03Y IHL FZATYNY

A

209
V1vYQ J04 1S3INDIY V¥ IAIZOTY

1dvis

US 9,471,404 B1

1

ENRICHING API REGISTRY USING BIG
DATA ANALYTICS

TECHNICAL FIELD

The present invention relates generally to a method,
system, and computer program product for data integration.
More particularly, the present invention relates to a method,
system, and computer program product for enriching API
registry using big data analytics.

BACKGROUND

“Big data” generally refers to a large and diverse data set.
Within big data, a variety of data sources produce or provide
data, data streams, time-series, and updates thereof, all of
which form the data set of big data. While traditional data
sources, for example, repositories of structured data can
contribute to big data, the particular challenges with big data
arise from the unstructured or unforeseeably composed data
that flows from relatively new types of data sources, such as
Smarter Cities, wearable technologies, social media, on-the-
go devices, and the Internet of Things. Thus, big data setup
often uses tools and technologies specifically designed for
handling, analyzing, and manipulating a wide variety of data
from a wide variety of sources without undesirable latency.

Analytics is the science of data analysis. Big data analyt-
ics includes tools and techniques designed for use with big
data. Big data analytics are used to gain insight into the
available data by analyzing available data to create, infer,
deduce, or derive new information or knowledge.

A data source, also interchangeably referred to hereinafter
as simply a “source”, provides data in some form to a big
data configuration. Generally, the data source publishes a set
of Application Programming Interface (API) using which
data can be obtained from the data source.

An API implements a functionality at a system. An API is
code-based tool or method, such as a function call in a
programming language, using which the functionality can be
activated or operated. In case of a data source, an API allows
another system to perform an operation at a system of the
data source to obtain certain data from the data source. For
example, quite commonly, a data source API has to be used
to provide authentication and billing credentials for access to
the source’s data. Different sources implement different
APIs to obtain different parts of their data in different
manners, for different purposes, using different protocols,
and the like.

An API generally accepts a set of zero or more input
parameters. A function or method invoked by calling an API
performs a corresponding functionality. The operation of a
function or method can result in data manipulation, data
output, or both. In case of a data source, an API call
generally results in data output—referred to as a result
set—from the data source.

When a consumer application needs data that is available
at a data source, the consumer application has to be inte-
grated with the data source. The integration is configured to
call the correct API of the correct data source with a correct
set of parameters, to receive the result set, and to provide the
result set to the consumer application.

Many entities have recognized that analyzing the wealth
of data available about people, objects, and events can give
their businesses an edge. Accordingly, more and more
consumer applications—also referred to herein as
requestor(s) or requestor application(s)—are seeking out
useful data from data sources. Not surprisingly, more and

10

15

20

25

30

35

40

45

50

55

60

65

2

more owners of sources of data are preparing to sell their
data to data consumer applications.

The illustrative embodiments recognize that there has
been an explosive growth in the number of data sources, the
volume of data from these sources, and the number of APIs
that must be used to gain access to this volume of data. The
illustrative embodiments recognize that even if the APIs are
published by a data source, each API of each data source
requires some integration effort, and such integration efforts
quickly become non-trivial.

The illustrative embodiments recognize that even after
such expensive integration efforts, the resulting data from
the selected data source may not meet a requestor’s require-
ments. The illustrative embodiments recognize that big data
configurations can play an important role in enabling a
requestor application to get just the right data from the right
combination of sources, according to the requestor’s needs.

SUMMARY

The illustrative embodiments provide a method, system,
and computer program product for enriching API registry
using big data analytics. An embodiment includes a method
for data integration using APIs. The embodiment analyzes,
using a processor and a memory, a request for data to
determine a set of functional characteristics and a set of
non-functional characteristics expected in the data. The
embodiment selects a first API entry in a registry of API
entries, the first API entry corresponding to a first API of the
first data source, wherein the first API entry includes a first
metadata corresponding to a first functional characteristic in
the set of functional characteristics. The embodiment
invokes the first API to obtain a first portion of the data, the
first portion having the first functional characteristic. The
embodiment invokes, using a second API entry in the
registry, a second API to obtain a second portion of the data).
The embodiment returns the first portion and the second
portion in a response to the request.

Another embodiment includes a computer program prod-
uct for data integration using APIs, the computer program
product comprising one or more computer-readable storage
devices, and program instructions stored on at least one of
the one or more storage devices.

Another embodiment includes a computer system for data
integration using APIs, the computer system comprising one
or more processors, one or more computer-readable memo-
ries, and one or more computer-readable storage devices,
and program instructions stored on at least one of the one or
more storage devices for execution by at least one of the one
or more processors via at least one of the one or more
memories.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objec-
tives and advantages thereof, will best be understood by
reference to the following detailed description of the illus-
trative embodiments when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented;

US 9,471,404 B1

3

FIG. 2 depicts a block diagram of a data processing
system in which illustrative embodiments may be imple-
mented;

FIG. 3 depicts a block diagram of an example configu-
ration for enriching API registry using big data analytics in
accordance with an illustrative embodiment;

FIG. 4 depicts a block diagram of another example
configuration for enriching API registry using big data
analytics in accordance with an illustrative embodiment;

FIG. 5 depicts a flowchart of an example process for
enriching API registry using big data analytics in accordance
with an illustrative embodiment; and

FIG. 6 depicts a flowchart of an example process for
enriching API registry using big data analytics in accordance
with an illustrative embodiment.

DETAILED DESCRIPTION

The illustrative embodiments used to describe the inven-
tion generally address and solve the above-described prob-
lems and other problems related to API-based systems
integration. The illustrative embodiments provide a method,
system, and computer program product for enriching API
registry using big data analytics.

An embodiment executes as an application in, or in
conjunction with, a data processing system used for big data
analytics. For example, an embodiment can be implemented
as a modification of an existing application that interfaces
with the APIs of data sources in a big data configuration,
such that the modified application operates in a manner
described herein.

An embodiment identifies a data source. The embodiment
identifies a set of APIs associated with the data source. The
embodiment analyzes an API in the set of APIs to determine
the set of parameters to supply and the result set to expect
from the API.

An embodiment further analyzes a result set obtained
from the API of the data source. In some cases, the result set
may be a historical result set, obtained from a previous
invocation of the API. In some other cases, the embodiment
invokes the API to receive a result set from the data source
in a response to the invocation.

Data of a data source, and consequently data in a result
set, can have functional (F) and non-functional (NF) aspects
or characteristics. A functional aspect of data is either a data
item contained in the data or information that describes the
data or a data item therein. For example, if the data includes
personal information of people, some non-limiting example
functional aspects of the data may include data items such as
age, gender, and location of a person. Some non-limiting
example functional aspects of the data may include descrip-
tive information such as the age of the data or a data item,
the relevance of the data or a data item, confidence value of
the data or a data item, a category of the data or a data item,
and accuracy of the data or a data item.

A non-functional aspect of data is indicative of a restric-
tion, procedure, value, or consequence of obtaining the data
or a data item. For example, if the data includes personal
information of people, some non-limiting example non-
functional aspects of the data may include a security policy
to obtain the data or a data item, cost of retrieving the data
or a data item, usage or usage restriction of the data or a data
item, method of metering or measuring the data or data item
retrieval, encryption policies, authentication requirements,
and the like.

An embodiment identifies functional and non-functional
aspects of a result set corresponding to an API of a data

15

25

30

40

45

55

65

4

source. In some cases, the embodiment self-learns a func-
tional characteristic from the data set even when the func-
tional characteristic is not provided in the result set. For
example, a result set may not include a confidence level—
which is a functional characteristic of a data item. One
embodiment computes the confidence level by comparing
the data item received from the source with a comparable
data item received from another source of known veracity or
reliability. The embodiment determines a confidence level of
the data item from the data source depending upon a degree
of match with the data item of the known veracity. Similarly,
an age of a data item from a source can also be established
by comparing a time of capture of the data item with a
current time.

Similarly, a relevance value of a data item can be estab-
lished based on a type of the data item and an age of the data
item. For example, location data item can become stale
quicker than a name data item for a person.

These examples of functional and non-functional aspects
and methods of computing certain functional aspects are not
intended to be limiting. From this disclosure, those of
ordinary skill in the art will be able to conceive many other
functional and non-functional aspects and methods for com-
puting other functional and non-functional aspects, and the
same are contemplated within the scope of the illustrative
embodiments.

An embodiment constructs metadata corresponding to the
API. For example, in one embodiment, the metadata
includes the functional aspects available in the result set
from the API. In another example embodiment, the metadata
includes the functional aspects available in the result set
from the API and the non-functional aspects of the result set.

In another example embodiment, the metadata includes
some combination of the functional and non-functional
aspects of the result set from the API and the gaps in the
result set. A gap in the result set is an functional aspect that
is missing, of lower-than-a-threshold confidence value, of
poor quality, or some combination thereof. For example, if
the result set includes personal information data of several
persons, but does not include a phone number of the persons,
the phone number is a functional aspect that is absent from
the result set. As another example, if the result set includes
personal information data of several persons, but includes a
one-month old or older locations of the persons, the location
data item is a functional aspect that is of poor quality in the
result set. As another example, if the result set includes
personal information data of several persons, and includes
only the previously known addresses of the persons, the
location data item is a functional aspect that has a confidence
value, which is below a threshold in the result set.

These examples of gap metadata are not intended to be
limiting. From this disclosure, those of ordinary skill in the
art will be able to conceive many other types and circum-
stances for determining gaps and gap metadata, and the same
are contemplated within the scope of the illustrative embodi-
ments.

Therefore, the metadata of an API according to an
embodiment comprises functional aspects, non-functional
aspects, gaps, or some combination thereof. An embodiment
stores or updates metadata of an API in a registry. The
registry is a repository of API information and the API
metadata. API information includes the published API inter-
face information, such as the name of the interface, the set
of input parameters, and the result set of the APIL.

An embodiment receives a request from a requestor
application. The request specifies the data that is requested.
In some cases the request may specify one or more func-

US 9,471,404 B1

5

tional and/or non-functional aspects of the requested data. In
such cases, the embodiment extracts the specified one or
more functional and/or non-functional aspects of the
requested data.

For example, a request may specifically request personal
information that includes current location data of persons.
Accordingly, the embodiment determines that the request
specifies two functional aspects—the location and the
recency of the location.

As another example, a request may specifically request
personal information where the cost of obtaining the data
should not exceed x dollars. Accordingly, the embodiment
determines that the request specifies a non-functional
aspect—the cost of obtaining the data. Within the scope of
the illustrative embodiments, a request can specify any
number and types of functional aspects, non-functional
aspects, or some combination thereof.

In other cases, the request may not specity the functional
and/or non-functional aspects of the requested data. In such
cases, the embodiment analyzes the request, and the
requested data to determine a set of functional and/or
non-functional aspects that should be present in the data to
satisfy the request.

For example, a request may request personal information
that is suitable for targeted advertising to individuals.
Accordingly, the embodiment determines that the requested
data should have two functional aspects—the location and
the recency of the location. Within the scope of the illus-
trative embodiments, a request can provide any number or
type of information, including but not limited to a purpose
for the requested data that is usable for determining a set of
functional or non-functional aspects that would satisfy the
request.

One embodiment determines whether a one or more APIs
at a single source can satisfy the request, to wit, provide the
requested data with the desired functional or non-functional
characteristics. In some cases, an embodiment may deter-
mine that more than one APIs at more than one sources have
to be invoked to obtain the requested data. The embodiment
determines a mix of the sources and their APIs that have to
be invoked to satisfy a request.

In some circumstances, API information from other reg-
istries may also be available to an embodiment, such as via
a published library from another registry. In such circum-
stances, when an API metadata in a registry according to an
embodiment includes a gap metadata, the embodiment
determines whether another API information in another
registry can satisfy the gap. If another API from another
registry can satisfy the gap, the embodiment records—as a
redirect—the other API in the other registry. Particularly, the
redirect is recorded in the API metadata where the gap is
identified. Thus, when the embodiment determines that an
API cannot satisfy a request for a particular functional or
non-functional aspect due to a gap in the API metadata
corresponding to that functional or non-functional aspect,
the embodiment can redirect the request to the other API at
the other registry for fulfillment of that requested functional
or non-functional aspect.

A method of an embodiment described herein, when
implemented to execute on a device or data processing
system, comprises substantial advancement of the function-
ality of that device or data processing system in API inte-
gration or date extraction from data sources using APIs. For
example, prior-art method of obtaining data from a data
source via an API requires extensive knowledge of the
numerous APIs of numerous sources without being able to
reliably characterize the contents and quality of the data that

10

15

20

25

30

35

40

45

50

55

60

65

6

those APIs return. An embodiment provides a method for
determining the functional and non-functional characteris-
tics of the data that various APIs of various data sources
return. An embodiment further enables creating a mix of API
invocations at a mix of sources to respond to a request for
data such that the data matches one or more specified or
expected functional or non-functional characteristics in the
request. Furthermore, an embodiment further recognizes
gaps in a return set of an API and can fill the gaps by using
another API at another data source or by redirecting all or
part of the request to another registry. Such a manner of
enriching API registry using big data analytics is unavailable
in presently available devices or data processing systems.
Thus, a substantial advancement of such devices or data
processing systems by executing a method of an embodi-
ment is in simplifying the API-based integration, maintain-
ing an up-to-date registry of API metadata that characterizes
the data that can be obtained from an API, allowing mixing
and matching of various APIs at one or more sources to
respond to a data request, and when possible also redirecting
all or part of a request to other registries for gap fulfillment.

The illustrative embodiments are described with respect
to certain sources, APIs, result sets, functional characteris-
tics or aspects, non-functional characteristics or aspects,
metadata, API information, registry organization, gaps, redi-
rects, devices, data processing systems, environments, com-
ponents, and applications only as examples. Any specific
manifestations of these and other similar artifacts are not
intended to be limiting to the invention. Any suitable mani-
festation of these and other similar artifacts can be selected
within the scope of the illustrative embodiments.

Furthermore, the illustrative embodiments may be imple-
mented with respect to any type of data, data source, or
access to a data source over a data network. Any type of data
storage device may provide the data to an embodiment of the
invention, either locally at a data processing system or over
a data network, within the scope of the invention. Where an
embodiment is described using a mobile device, any type of
data storage device suitable for use with the mobile device
may provide the data to such embodiment, either locally at
the mobile device or over a data network, within the scope
of the illustrative embodiments.

The illustrative embodiments are described using specific
code, designs, architectures, protocols, layouts, schematics,
and tools only as examples and are not limiting to the
illustrative embodiments. Furthermore, the illustrative
embodiments are described in some instances using particu-
lar software, tools, and data processing environments only as
an example for the clarity of the description. The illustrative
embodiments may be used in conjunction with other com-
parable or similarly purposed structures, systems, applica-
tions, or architectures. For example, other comparable
mobile devices, structures, systems, applications, or archi-
tectures therefor, may be used in conjunction with such
embodiment of the invention within the scope of the inven-
tion. An illustrative embodiment may be implemented in
hardware, software, or a combination thereof.

The examples in this disclosure are used only for the
clarity of the description and are not limiting to the illus-
trative embodiments. Additional data, operations, actions,
tasks, activities, and manipulations will be conceivable from
this disclosure and the same are contemplated within the
scope of the illustrative embodiments.

Any advantages listed herein are only examples and are
not intended to be limiting to the illustrative embodiments.
Additional or different advantages may be realized by spe-

US 9,471,404 B1

7

cific illustrative embodiments. Furthermore, a particular
illustrative embodiment may have some, all, or none of the
advantages listed above.

With reference to the figures and in particular with
reference to FIGS. 1 and 2, these figures are example
diagrams of data processing environments in which illus-
trative embodiments may be implemented. FIGS. 1 and 2 are
only examples and are not intended to assert or imply any
limitation with regard to the environments in which different
embodiments may be implemented. A particular implemen-
tation may make many modifications to the depicted envi-
ronments based on the following description.

FIG. 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented. Data processing environment 100 is a
network of computers in which the illustrative embodiments
may be implemented. Data processing environment 100
includes network 102. Network 102 is the medium used to
provide communications links between various devices and
computers connected together within data processing envi-
ronment 100. Network 102 may include connections, such
as wire, wireless communication links, or fiber optic cables.

Clients or servers are only example roles of certain data
processing systems connected to network 102 and are not
intended to exclude other configurations or roles for these
data processing systems. Server 104 and server 106 couple
to network 102 along with storage unit 108. Software
applications may execute on any computer in data process-
ing environment 100. Clients 110, 112, and 114 are also
coupled to network 102. A data processing system, such as
server 104 or 106, or client 110, 112, or 114 may contain data
and may have software applications or software tools
executing thereon.

Only as an example, and without implying any limitation
to such architecture, FIG. 1 depicts certain components that
are usable in an example implementation of an embodiment.
For example, servers 104 and 106, and clients 110, 112, 114,
are depicted as servers and clients only as example and not
to imply a limitation to a client-server architecture. As
another example, an embodiment can be distributed across
several data processing systems and a data network as
shown, whereas another embodiment can be implemented
on a single data processing system within the scope of the
illustrative embodiments. Data processing systems 104, 106,
110, 112, and 114 also represent example nodes in a cluster,
partitions, and other configurations suitable for implement-
ing an embodiment.

Device 132 is an example of a device described herein.
For example, device 132 can take the form of a smartphone,
a tablet computer, a laptop computer, client 110 in a sta-
tionary or a portable form, a wearable computing device, or
any other suitable device. Any software application
described as executing in another data processing system in
FIG. 1 can be configured to execute in device 132 in a
similar manner. Any data or information stored or produced
in another data processing system in FIG. 1 can be config-
ured to be stored or produced in device 132 in a similar
manner.

Application 105 implements an embodiment described
herein, and executes in server 104, which is a part of a big
data configuration. Analytics engine 107 provides the big
data analytics services in the big data configuration. Data
processing system 110 is a data processing system at a data
source, and supports APIs 111 as described herein. Data
processing system 112 is a data processing system at another
data source, and supports APIs 113 as described herein.
Application 105 uses analytics engine 107 to analyze the

5

10

15

20

25

30

35

40

45

50

55

60

8

result set of an API, such as from API 111 or 113, to create
the metadata in a manner described herein. Application 105
stores and updates the API information and API metadata,
such as those pertaining to APIs 111 and 113, in repository
109. Application 134 is an example of a requestor applica-
tion executing in device 132. Application 115 is another
example of a requestor application executing in data pro-
cessing system 114. Requestor 115 or 134 sends a request for
data. Application 105 receives and analyzes the request.
Application 105 selects one or more APIs, e.g., an API from
APIs 111 and another API from APIs 113, to obtain the data
that satisfies the request. According to one embodiment,
application 105 uses the obtained data for self-learning, such
as by using analytics engine 107 on the obtained data and
manipulating one or more entries about API 111 or API 113
in registry 109.

Servers 104 and 106, storage unit 108, and clients 110,
112, and 114 may couple to network 102 using wired
connections, wireless communication protocols, or other
suitable data connectivity. Clients 110, 112, and 114 may be,
for example, personal computers or network computers.

In the depicted example, server 104 may provide data,
such as boot files, operating system images, and applications
to clients 110, 112, and 114. Clients 110, 112, and 114 may
be clients to server 104 in this example. Clients 110, 112,
114, or some combination thereof, may include their own
data, boot files, operating system images, and applications.
Data processing environment 100 may include additional
servers, clients, and other devices that are not shown.

In the depicted example, data processing environment 100
may be the Internet. Network 102 may represent a collection
of networks and gateways that use the Transmission Control
Protocol/Internet Protocol (TCP/IP) and other protocols to
communicate with one another. At the heart of the Internet
is a backbone of data communication links between major
nodes or host computers, including thousands of commer-
cial, governmental, educational, and other computer systems
that route data and messages. Of course, data processing
environment 100 also may be implemented as a number of
different types of networks, such as for example, an intranet,
a local area network (LAN), or a wide area network (WAN).
FIG. 1 is intended as an example, and not as an architectural
limitation for the different illustrative embodiments.

Among other uses, data processing environment 100 may
be used for implementing a client-server environment in
which the illustrative embodiments may be implemented. A
client-server environment enables software applications and
data to be distributed across a network such that an appli-
cation functions by using the interactivity between a client
data processing system and a server data processing system.
Data processing environment 100 may also employ a service
oriented architecture where interoperable software compo-
nents distributed across a network may be packaged together
as coherent business applications.

With reference to FIG. 2, this figure depicts a block
diagram of a data processing system in which illustrative
embodiments may be implemented. Data processing system
200 is an example of a computer, such as servers 104 and
106, or clients 110, 112, and 114 in FIG. 1, or another type
of'device in which computer usable program code or instruc-
tions implementing the processes may be located for the
illustrative embodiments.

Data processing system 200 is also representative of a
data processing system or a configuration therein, such as
data processing system 132 in FIG. 1 in which computer
usable program code or instructions implementing the pro-
cesses of the illustrative embodiments may be located. Data

US 9,471,404 B1

9

processing system 200 is described as a computer only as an
example, without being limited thereto. Implementations in
the form of other devices, such as device 132 in FIG. 1, may
modify data processing system 200, such as by adding a
touch interface, and even eliminate certain depicted com-
ponents from data processing system 200 without departing
from the general description of the operations and functions
of data processing system 200 described herein.

In the depicted example, data processing system 200
employs a hub architecture including North Bridge and
memory controller hub (NB/MCH) 202 and South Bridge
and input/output (I/O) controller hub (SB/ICH) 204. Pro-
cessing unit 206, main memory 208, and graphics processor
210 are coupled to North Bridge and memory controller hub
(NB/MCH) 202. Processing unit 206 may contain one or
more processors and may be implemented using one or more
heterogeneous processor systems. Processing unit 206 may
be a multi-core processor. Graphics processor 210 may be
coupled to NB/MCH 202 through an accelerated graphics
port (AGP) in certain implementations.

In the depicted example, local area network (LAN)
adapter 212 is coupled to South Bridge and I/O controller
hub (SB/ICH) 204. Audio adapter 216, keyboard and mouse
adapter 220, modem 222, read only memory (ROM) 224,
universal serial bus (USB) and other ports 232, and PCl/
PCle devices 234 are coupled to South Bridge and 1/O
controller hub 204 through bus 238. Hard disk drive (HDD)
or solid-state drive (SSD) 226 and CD-ROM 230 are
coupled to South Bridge and 1/O controller hub 204 through
bus 240. PCI/PCle devices 234 may include, for example,
Ethernet adapters, add-in cards, and PC cards for notebook
computers. PCI uses a card bus controller, while PCle does
not. ROM 224 may be, for example, a flash binary input/
output system (BIOS). Hard disk drive 226 and CD-ROM
230 may use, for example, an integrated drive electronics
(IDE), serial advanced technology attachment (SATA) inter-
face, or variants such as external-SATA (eSATA) and micro-
SATA (mSATA). A super /O (SIO) device 236 may be
coupled to South Bridge and I/O controller hub (SB/ICH)
204 through bus 238.

Memories, such as main memory 208, ROM 224, or flash
memory (not shown), are some examples of computer
usable storage devices. Hard disk drive or solid state drive
226, CD-ROM 230, and other similarly usable devices are
some examples of computer usable storage devices includ-
ing a computer usable storage medium.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of vari-
ous components within data processing system 200 in FIG.
2. The operating system may be a commercially available
operating system such as AIX® (AIX is a trademark of
International Business Machines Corporation in the United
States and other countries), Microsoft® Windows® (Micro-
soft and Windows are trademarks of Microsoft Corporation
in the United States and other countries), Linux® (Linux is
a trademark of Linus Torvalds in the United States and other
countries), iIOS™ (108 is a trademark of Cisco Systems, Inc.
licensed to Apple Inc. in the United States and in other
countries), or Android™ (Android is a trademark of Google
Inc., in the United States and in other countries). An object
oriented programming system, such as the Java™ program-
ming system, may run in conjunction with the operating
system and provide calls to the operating system from
Java™ programs or applications executing on data process-
ing system 200 (Java and all Java-based trademarks and
logos are trademarks or registered trademarks of Oracle
Corporation and/or its affiliates).

10

15

20

25

30

35

40

45

50

55

60

65

10

Instructions for the operating system, the object-oriented
programming system, and applications or programs, such as
application 105 in FIG. 1, are located on storage devices,
such as hard disk drive 226, and may be loaded into at least
one of one or more memories, such as main memory 208, for
execution by processing unit 206. The processes of the
illustrative embodiments may be performed by processing
unit 206 using computer implemented instructions, which
may be located in a memory, such as, for example, main
memory 208, read only memory 224, or in one or more
peripheral devices.

The hardware in FIGS. 1-2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or in place of the hardware depicted in FIGS. 1-2.
In addition, the processes of the illustrative embodiments
may be applied to a multiprocessor data processing system.

In some illustrative examples, data processing system 200
may be a personal digital assistant (PDA), which is generally
configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-
generated data. A bus system may comprise one or more
buses, such as a system bus, an 1/O bus, and a PCI bus. Of
course, the bus system may be implemented using any type
of communications fabric or architecture that provides for a
transfer of data between different components or devices
attached to the fabric or architecture.

A communications unit may include one or more devices
used to transmit and receive data, such as a modem or a
network adapter. A memory may be, for example, main
memory 208 or a cache, such as the cache found in North
Bridge and memory controller hub 202. A processing unit
may include one or more processors or CPUs.

The depicted examples in FIGS. 1-2 and above-described
examples are not meant to imply architectural limitations.
For example, data processing system 200 also may be a
tablet computer, laptop computer, or telephone device in
addition to taking the form of a mobile or wearable device.

With reference to FIG. 3, this figure depicts a block
diagram of an example configuration for enriching API
registry using big data analytics in accordance with an
illustrative embodiment. Application 302 is an example of
application 105 in FIG. 1. Data source 304 (labeled “source
1) through data source 306 (labeled “source n”) are any
number and types of data sources as described herein.

APIs 308 in source 304 and APIs 310 in source 306 are
each similar to either of APIs 111 or 113 in FIG. 1. APIs 308
in source 304 can be similar or distinct from and APIs 310
in source 306 depending upon the particular implementa-
tions at those sources. APIs 308 allow access to data 312 at
source 304, and APIs 310 allow access to data 314 at source
306.

Big data analytics engine 316 is an example of analytics
engine 107 in FIG. 1. Registry 318 is an example of registry
109 in FIG. 1.

Component 320 analyzes the APIs presented by a data
source. As a non-limiting example, using published infor-
mation about APIs 308, component 320 may send one or
more requests 322 for test data to one or more APIs 308.
Source 304 returns one or more responses 324, which
include one or more result sets from data 312. As another
non-limiting example, component 320 analyzes APIs 308 by
using published information about APIs 308 and without
sending request 322. As described herein, historical result
sets from APIs 308 can be used in place of the result sets in

US 9,471,404 B1

11

response 324 for a similar analytical purpose. API analysis
component 320 similarly operates to analyze APIs 310 at
source 306.

Component 326 analyzes a result set in response 324.
Particularly, component 326 uses analytics engine 316 to
analyze the result set. For example, using analytics engine
316, subcomponent 328 extracts one or more functional
aspects from the result set. The extracted functional aspects
forms functional metadata for that API in APIs 308 which
returned the result set in a particular response 324.

Similarly, using analytics engine 316, subcomponent 330
extracts one or more non-functional aspects from the result
set. The extracted non-functional aspects forms non-func-
tional metadata for that API in APIs 308 which returned the
result set in a particular response 324.

Result set analysis component 326 similarly operates to
analyze one or more result sets from APIs 310 at source 306.
In one embodiment, component 326 also analyzes a result
set for gaps and creates gap metadata for the API as
described herein.

API information and API metadata of an API are collec-
tively referred to as an API entry in repository 318. Com-
ponent 332 manipulates an API information and an API
metadata at registry 318. For example, component 332 can
create, add, modify, update, or remove, as needed, an API
entry for an API in APIs 308. Similarly, component 332 can
create, add, modify, update, or remove as needed any
number of API entries for any number or types of APIs 308
or 310, for any number of data sources—sources 1-z.

In one embodiment, registry 318 has a corresponding user
interface (UI) (not shown), using which the API entries in
registry 318 can be categorized, indexed, or cataloged in an
implementation-specific manner. In another embodiment,
APIs can be ranked or prioritized in registry 318. For
example, API entries of the APIs of a source can be ranked
according to their reliability or usefulness of their result sets.
As another example, API entries of APIs of different sources,
which provide comparable result sets, can be ranked or
prioritized according to the quality, recency, accuracy, and
other such factors associated with their respective result sets.

As an example, API entry 334 corresponds to an API in
APIs 308 at source 304 (source 1). Portion 334A of API
entry 334 includes API information about the API as
described herein. Portion 334B of API entry 334 includes
functional metadata for the API as described herein. Portion
334C of API entry 334 includes non-functional metadata
about the API as described herein. Portion 334D of API
entry 334 includes gap metadata about the API as described
herein.

With reference to FIG. 4, this figure depicts a block
diagram of another example configuration for enriching API
registry using big data analytics in accordance with an
illustrative embodiment. Application 402 is an example of
application 105 in FIG. 1. Registry 404 is an example of
registry 318 in FIG. 3. Requestor 406 is an example of
requestor 134 or 115 in FIG. 1.

Requestor 406 sends request 408 to a big data configu-
ration, and is received or detected at application 402 execut-
ing in the big data configuration. Request 408 may expressly
specify one or more functional aspects, non-functional
aspects, or a combination thereof, that are desired in
response to request 408. Request 408 may specify a purpose
of other usability of the data returned in response to request
408, where the purpose or usability implies one or more
functional aspects, non-functional aspects, or a combination
thereof, that would be desirable in response to request 408.

10

15

20

25

30

35

40

45

50

55

60

65

12

Component 410 analyzes request 408 to identify the
functional aspects, non-functional aspects, or some combi-
nation thereof, that should be present in the response data.
For example, component 410 also uses big data analytics
engine 316 in FIG. 3, for such analysis and identification.

Based on the functional or non-functional aspects identi-
fied by component 410 from request 408, component 412
selects the APIs that should be invoked to obtain the
response data. Assume, as an example, that registry 404
includes several API entries for the APIs at data source
“source X”. API entries AX1 and AX2 are API entries
corresponding to two such APIs at source X. Similarly,
assume that registry 404 includes several API entries for the
APIs at data source “source Y”. API entry AY1 is an API
entry corresponding to one such API at source y. Similarly,
assume that registry 404 also includes several API entries for
the APIs at data source “source Z”. API entries AZ1, AZ2,
and AZ3 are API entries corresponding to three such APIs at
source Z. Each API entry depicted in repository 404 is
formed in the manner of API entry 334 in FIG. 3. Many more
API entries for sources X, Y, Z, and other sources can
similarly exist in registry 404 but are not depicted for clarity.

Suppose that component 412 determines that a single API
from a single source is insufficient for supplying the data that
is responsive to request 408. In one example, component
412 further determines that the combination of AX1, AX2,
AY1, AZ1, AZ2, and AZ3, when invoked at their respective
sources can provide the response data for request 408.
Therefore, component 412 selects APIs AX1, AX2, AY1,
AZ1, AZ2, and AZ3 for invocation.

Component 414 calls or invokes APIs AX1, AX2, AY1,
AZ1,A72, and AZ3 with their respective sets of parameters
based on request 408 and according to their respective API
information in registry 404. Component invokes over net-
work 417, APIs AX1 and AX2 in a manner that source X 416
may specity. Similarly, component invokes over network
417, API AY1 in a manner that source y 418 may specify.
Similarly, component invokes over network 417, APIs AZ1,
AZ2, and AZ3 in a manner that source Z 420 may specify.
Some or all of the invocations return corresponding result
sets to application 402.

Component 422 assembles the returned result sets into
response data. Response 424 includes the response data.

In another example, component 412 further determines
that the combination of AX1, AX2, AY1, AZ1, AZ2, and
AZ3, when invoked at their respective sources cannot pro-
vide all the response data for request 408. In other words, the
invocation of AX1, AX2, AY1, AZ1, AZ72, and AZ3 still
leaves a gap, such as a gap identified in gap metadata of one
or more of their corresponding API entries in registry 404.

Component 412 selects APIs AX1, AX2, AY1, AZ1, AZ2,
and AZ3 for invocation and collects some of the response
data as described above. Component 426 identifies a source
to which all or a part of request 408 should be redirected to
fulfill the gap in the response data. As a non-limiting
example, component 426 identifies the other source (not
shown) from the published registry information (not shown)
from another registry (not shown).

Component 426 prepares a redirection instruction. In one
embodiment, response 424 includes the response data from
the API invocation and the redirection instruction for the gap
in the response data. When none of the APIs described in
registry 404 can provide any part of the response data,
response 424 may not include any response data and may
only include one or more redirect instructions to one or more
other sources.

US 9,471,404 B1

13

Once application 402 learns that certain APIs satisfy
certain requests from certain requestors, application 402 can
create bindings of those APIs to those requestors. The
bindings can be static bindings or dynamic bindings as may
be suitable in a given implementation.

With reference to FIG. 5, this figure depicts a flowchart of
an example process for enriching API registry using big data
analytics in accordance with an illustrative embodiment.
Process 500 can be implemented in application 302 in FIG.
3.

For a data source, the application analyzes an API to
determine the API parameters and result set (block 502). The
application obtains a result set using the API (block 504).
The result set obtained in block 504 can be through an actual
invocation of the API or from a historical repository of result
sets from a previous invocation of the API.

The application determines the functional characteristics
of the result set (block 506). The application makes the
determination of block 506 by finding an functional char-
acteristic present in the result set, by analyzing the result set
to compute a functional characteristic, or some combination
thereof.

The application evaluates a non-functional characteristic
of the result set (block 508). The application repeats block
508 for as many non-functional characteristics as may have
to be evaluated in a given implementation.

The application constructs the metadata for the API (block
510). The metadata includes functional characteristics, non-
functional characteristics, determined gaps, any desirable or
undesirable aspects of the result set of the API, any redi-
rections that can be predetermined for the gaps or undesir-
able aspects, and the like, or some combination thereof, as
described herein.

The application stores or updates the API metadata of the
APl in a registry (block 512). The application ends process
500 thereafter. The application can repeat process 500 for as
many APIs of as many sources as may have to be analyzed
in this manner.

With reference to FIG. 6, this figure depicts a flowchart of
an example process for enriching API registry using big data
analytics in accordance with an illustrative embodiment.
Process 600 can be implemented in application 402 in FIG.
4.

The application receives a request for data (block 602).
The application analyzes the request to identify the func-
tional and non-functional characteristics of the requested
data (block 604).

The application determines whether the functional and
non-functional characteristics of the requested data can be
satisfied by a single data source (block 606). If the functional
and non-functional characteristics of the requested data can
be satisfied by a single data source (“Yes” block 606), the
application selects the source (block 608). The application
further determines whether the functional and non-func-
tional characteristics of the requested data can be satisfied by
invoking a single API of the selected data source (block
610). If a single API will suffice (“Yes” path of block 610),
the application selects the API (block 612). The application
proceeds to block 618 thereafter.

At block 606, if the functional and non-functional char-
acteristics of the requested data cannot be satisfied by a
single data source (“No” path of block 606), the application
selects those multiple sources which can satisty all or most
of the requested data (block 614). The application also
selects one or more APIs from each of those selected sources
for invocation (block 616).

10

20

40

45

60

14

The application invokes the selected one or more APIs
from the selected one or more sources (block 618). The
application receives one or more results sets as a result of the
invocation(s) (block 620).

The application determines whether all functional and
non-functional characteristics needed according to the
request are satisfied by the result sets (block 622). If not all
functional and non-functional characteristics needed accord-
ing to the request are satisfied by the result sets (“No” path
of block 622), the application identifies another source for
the data corresponding to an unsatisfied functional or non-
functional characteristic (block 624). The application
repeats block 624 for as many unsatisfied functional or
non-functional characteristics are remaining to be satisfied.

The application obtains redirect information for such
other source(s) (block 626). The application assembles the
response to the request using the result set(s), the
redirection(s), or some combination thereof (block 628). If
all functional and non-functional characteristics needed
according to the request are satisfied by the result sets (“Yes”
path of block 622), the application performs block 628 as
well.

The application sends the response to the requestor that
sent the request (block 630). The application ends process
600 thereafter.

Thus, a computer implemented method, system or appa-
ratus, and computer program product are provided in the
illustrative embodiments for enriching API registry using
big data analytics. Where an embodiment or a portion
thereof is described with respect to a type of device, the
computer implemented method, system or apparatus, the
computer program product, or a portion thereof, are adapted
or configured for use with a suitable and comparable mani-
festation of that type of device.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an

US 9,471,404 B1

15

external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational

10

15

20

25

30

35

40

45

50

55

60

65

16

steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

What is claimed is:
1. A method for data integration using application pro-
gramming interfaces (APIs), the method comprising:

analyzing, using a processor and a memory, a request for
data to determine a set of functional characteristics and
a set of non-functional characteristics expected in the
data;

selecting a first API entry in a registry of API entries, the
first API entry corresponding to a first API of the first
data source, wherein the first API entry includes a first
metadata corresponding to a first functional character-
istic in the set of functional characteristics;

invoking the first API to obtain a first portion of the data,
the first portion having the first functional characteris-
tic;

invoking, using a second API entry in the registry, a
second API to obtain a second portion of the data; and

returning the first portion and the second portion in a
response to the request;

analyzing the first API of the first data source to identify
a set of input parameters and a first result set of the first
API of the first data source;

computing, using big data analytics, a functional charac-
teristic of the first result set, the functional character-
istic being the first functional characteristic;

computing a non-functional characteristic of the first
result set;

constructing the first API entry, wherein the first API entry
comprises the set of input parameters, the first metadata
corresponding to the functional characteristic, and a
second metadata corresponding to the non-functional
characteristics.

2. The method of claim 1, further comprising:

determining that a second functional characteristic in the
set of functional characteristics is unavailable from any
API entries in the registry;

selecting from another published registry, a second data
source, wherein the second data source has an API
whose result set has the second functional characteris-
tic; and

US 9,471,404 B1

17

including, in the response to the request, a redirecting
instruction, such that at least a portion of the request
can be redirected to the second data source.

3. The method of claim 1, further comprising:

determining, by using the big data analytics, that the first

result set excludes a second functional characteristic;
and

adding in the first API entry, a third metadata correspond-

ing to the absence of the second functional character-
istic.

4. The method of claim 3, further comprising:

selecting from another published registry, a second data

source, wherein the second data source has an API
whose result set has the second functional characteris-
tic; and

including, in the first API entry of the first API of the first

data source, a fourth metadata, the fourth metadata
comprising a redirecting instruction to invoke a second
API at the second data source.

5. The method of claim 1, wherein the second API is at the
first data source, and the second portion has a second
functional characteristic in the set of functional character-
istics.

6. The method of claim 1, wherein the second API is at a
second data source, and the second portion has a first
non-functional characteristic in the set of non-functional
characteristics.

7. The method of claim 1, further comprising:

selecting a functional characteristic specified in the

request as a member of the set of functional character-
istics.

8. The method of claim 1, further comprising:

selecting a non-functional characteristic specified in the

request as a member of the set of non-functional
characteristics.

9. The method of claim 1, further comprising:

evaluating a use of the data stated in the request; and

identifying a functional characteristic as a member of the
set of functional characteristics, wherein the identified
functional characteristic satisfies the stated use.

10. The method of claim 1, wherein a functional charac-
teristic in the set of functional characteristics is a data item
in the data.

11. The method of claim 1, wherein a functional charac-
teristic in the set of functional characteristics is a descriptive
information which describes the portion of the data.

12. The method of claim 11, wherein the descriptive
information is an age of the portion of the data.

13. The method of claim 11, wherein the descriptive
information is an confidence value of the portion of the data.

14. The method of claim 13, wherein the consequence is
a cost of obtaining the data.

15. The method of claim 1, wherein a non-functional
characteristic in the set of non-functional characteristics is
consequence of obtaining the data.

16. The method of claim 1, wherein the method is
embodied in a computer program product comprising one or
more computer-readable storage devices and computer-read-
able program instructions which are stored on the one or
more computer-readable tangible storage devices and
executed by one or more processors.

17. The method of claim 1, wherein the method is
embodied in a computer system comprising one or more
processors, one or more computer-readable memories, one
or more computer-readable storage devices and program
instructions which are stored on the one or more computer-

10

15

20

25

30

35

40

45

50

55

60

65

18

readable storage devices for execution by the one or more
processors via the one or more memories and executed by
the one or more processors.

18. A computer program product for data integration
using application programming interfaces (APIs), the com-
puter program product comprising one or more computer-
readable storage devices, and program instructions stored on
at least one of the one or more storage devices, the stored
program instructions comprising:

program instructions to analyze, using a processor and a

memory, a request for data to determine a set of
functional characteristics and a set of non-functional
characteristics expected in the data;

program instructions to select a first API entry in a registry

of API entries, the first API entry corresponding to a
first API of the first data source, wherein the first API
entry includes a first metadata corresponding to a first
functional characteristic in the set of functional char-
acteristics;

program instructions to invoke the first API to obtain a

first portion of the data, the first portion having the first
functional characteristic;

program instructions to invoke, using a second API entry

in the registry, a second API to obtain a second portion
of the data; and
program instructions to return the first portion and the
second portion in a response to the request;
analyzing the first API of the first data source to identify
a set of input parameters and a first result set of the first
API of the first data source;
computing, using big data analytics, a functional charac-
teristic of the first result set, the functional character-
istic being the first functional characteristic;
computing a non-functional characteristic of the first
result set;
constructing the first API entry, wherein the first API entry
comprises the set of input parameters, the first metadata
corresponding to the functional characteristic, and a second
metadata corresponding to the non-functional characteris-
tics.

19. A computer system for data integration using appli-
cation programming interfaces (APIs), the computer system
comprising one or more processors, one or more computer-
readable memories, and one or more computer-readable
storage devices, and program instructions stored on at least
one of the one or more storage devices for execution by at
least one of the one or more processors via at least one of the
one or more memories, the stored program instructions
comprising:

program instructions to analyze, using a processor and a

memory, a request for data to determine a set of
functional characteristics and a set of non-functional
characteristics expected in the data;

program instructions to select a first API entry in a registry

of API entries, the first API entry corresponding to a
first API of the first data source, wherein the first API
entry includes a first metadata corresponding to a first
functional characteristic in the set of functional char-
acteristics;

program instructions to invoke the first API to obtain a

first portion of the data, the first portion having the first
functional characteristic;

program instructions to invoke, using a second API entry

in the registry, a second API to obtain a second portion
of the data; and

program instructions to return the first portion and the

second portion in a response to the request;

US 9,471,404 B1

19

analyzing the first API of the first data source to identify
a set of input parameters and a first result set of the first
API of the first data source;
computing, using big data analytics, a functional charac-
teristic of the first result set, the functional character-
istic being the first functional characteristic;
computing a non-functional characteristic of the first
result set;
constructing the first API entry, wherein the first API entry
comprises the set of input parameters, the first metadata
corresponding to the functional characteristic, and a second
metadata corresponding to the non-functional characteris-
tics.

10

20

